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Abstract— We develop algorithms that can assist robot to
perform building exterior mapping, which is important for
building energy retrofitting. In this task, a robot needs to
identify building facades in its localization and mapping pro-
cess, which in turn can be used to assist robot navigation.
Existing localization and mapping algorithms rely on low
level features such as point clouds and line segments and
cannot be directly applied to our task. We attack this problem
by employing a multiple layer feature graph (MFG), which
contains five different features ranging from raw key points
to planes and vanishing points in 3D, in an extended Kalman
filter (EKF) framework. We analyze how errors are generated
and propagated in the MFG construction process, and then
apply MFG data as observations for the EKF to map building
facades. We have implemented and tested our MFG-EKF
method at three different sites. Experimental results show that
building facades are successfully constructed in modern urban
environments with mean relative errors of plane depth less than
4.66%.

I. INTRODUCTION

Our group is developing vision algorithms to assist build-

ing exterior survey using a mobile robot. This step can

greatly assist building energy retrofitting. The task requires

a robot to map building facades with its on-board camera

when the robot travels. However, existing navigation methods

often utilize low level landmarks, such as feature points

and point clouds, and cannot directly provide information

for build facades, which can be viewed as high level land-

marks. Actually, the high level landmarks, such as primary

planes and salient lines, have distinctive advantages over low

level features. Bearing clear geometric meaning, high level

landmarks are less sensitive to different lighting conditions

and varying shadows where low level features are often

challenged. High level landmarks are ubiquitous in modern

urban areas where rectilinear objects dominate camera field

of view. Humans are used to navigating in unknown environ-

ments by effectively using high level landmarks as reference.

However, robots still have difficulty to utilize advantages of

high level landmarks due to challenges in feature recognition

and correspondence.

In 2012, we proposed a two-view based multilayer feature

graph (MFG) as a scene understanding and knowledge

representation method for robot navigation [1]. An MFG

is constructed from overlapping and dislocated two views

and contains five different features ranging from raw key

points to planes and vanishing points in 3D. Here we
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Fig. 1. A sample output of high level landmarks and the robot trajectory
after the mapping process in 3D view. The system is able to recognize
primary planes from building facades and their corresponding co-planar lines
as high level landmarks. The numbered corresponding building facades are
also color coded in the top right and bottom left images.

build our high level landmark-based maps (see Fig. 1) by

employing MFG as observations in an extended Kalman

filter (EKF) framework. We analyze how errors are generated

and propagated in the MFG construction process, which

characterizes observation errors in the EKF. We derive closed

form solutions for error distributions. Based on projective

geometry, we derive the observation models to complete the

EKF framework. We have implemented and tested our MFG-

EKF method at three different sites. Experimental results

show that high level landmarks are successfully constructed

in modern urban environments with mean relative plane

depth errors less than 4.66%.

II. RELATED WORK

Robotic mapping with high level landmarks relates to

a broad body of research in simultaneous localization and

mapping (SLAM) and visual odometry including different

sensor configurations and different landmark selections.

Depending on costs, payload limitation, and navigation

environments, the most common sensors for robot navigation

include sonar arrays [2], laser range finders [3], [4], depth

cameras [5], regular cameras [6]–[10], or their combina-

tions [11], [12]. Mapping tasks are often conducted under the

SLAM framework [13]. As a partially observable Markovian

decision process, SLAM infers system states based on the

sensory input using different filters and loop closure tech-

niques. The system states usually include both landmarks and

robot states whereas landmarks are the representation of the

physical world. For example, landmarks are point clouds if a

laser ranger finder or a depth camera is the primary sensor. In



vision-based SLAM, SIFT feature points or its variants [6],

[7], [14], [15] and line features [8]–[10] are often employed

as landmarks.

Our work belongs to the vision-based SLAM category

where one or more cameras are the primary navigation

sensor. Recently, many researchers realize landmark selec-

tions can make a difference in SLAM and visual odometry

performance. Lower level landmarks [14], such as Harris

corners and SIFT points, are relatively easy to use due

to their geometric simplicity, which share many geometric

properties with traditional point clouds used for laser range

finders. However, point features are merely mathematical

singularities in color, texture, and geometric space. They

can be easily influenced by lighting and shadow conditions.

Realizing the limitation, recent efforts focus on developing

high level landmarks such as lines/edges/line segments [8],

[9], [16]. Zhang et al. [17] use vertical lines and floor lines

in a monocular SLAM and build a 3D line-based map in an

indoor corridor environment.

More recent sophisticated methods combine multiple fea-

tures such as points, lines, and planes. Gee et al. [18]

incorporate 3D planes and lines into visual SLAM frame-

work. Martinez et al. [19] propose a monocular SLAM

algorithm that unifies the estimation of point and planar

features. These works have demonstrated the robustness of

high level landmarks and inspired this work. Observe that

the existing works only treat different landmarks as isolated

geometric objects, without exploring the inner relationship

between them. The treatment simplifies the SLAM problem

formulation but cannot fully utilize the power of high level

landmarks.

Our build exterior work is built on visual navigation

and mapping development over the past decade. We have

developed appearance-based methods [20], investigated how

depth error affects navigation [21], studied mirrored sur-

face detection [22], and used vertical line segments for

visual odometry tasks [23], [24]. In the process, we have

learned that it is necessary to combine the benefits of

different features to assist navigation. This leads to the MFG

development [1] which captures four types of geometric

relationships including adjacency, collinearity, coplanarity,

and parallelism. Here we present our latest results on how

to combine MFG in an EKF framework to utilize the feature

relationships in the mapping process.

III. PROBLEM DEFINITION

A robot equipped with a single camera navigates in an

unknown environment. The robot attempts to estimate high

level landmarks such as building facades or salient edges

from input image frames. The basic assumptions are,

a.1 The robot operates in a largely static modern urban

environment with rectilinear structures, which is the

prerequisite for MFG.

a.2 The onboard camera is pre-calibrated and has a known

intrinsic matrix K.

a.3 The initial step of robot movement is known for refer-

ence. Otherwise, estimates would be up to scale.

In our approach, adjacent raw image frame pairs are first

employed to construct MFG [1] sequence. Let Ik be the k-

th (k ∈ N) image frame and Mk (k ≥ 1) be the MFG

constructed from frames Ik and Ik−1. Fig. 2 illustrates that

MFG is a data structure composed of five layers of feature

nodes: key points, line segments, ideal lines, primary planes

and vanishing points; edges between nodes of different

layers represent geometric relationships including adjacency,

collinearity, coplanarity, and parallelism.
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Fig. 2. The structure of an MFG from [1].

The resulting MFG sequence, {Mk, k ≥ 1}, is considered

as the input to the problem. Denote {Ck} the camera

coordinate system (CCS) associated with Ik. MFGs assist us

in identifying high level landmarks such as 3D planes and

their associated coplanar lines in physical space. However,

the planes and lines from Mk are represented w.r.t. {Ck},

which cannot be directly used as global landmarks. Define

the world coordinate system (WCS), {W}, to coincide with

{C0}. Now we are ready to define our problem.

Problem 1: Given MFG sequence {Mk : k ≥ 1, k ∈
N}, map high level landmarks including 3D planes and

coplanar lines in {W}, and assess the uncertainty of the

mapping process by deriving error covariance matrices for

each landmark.

To solve the landmark mapping problem, we employ an

EKF-based approach. In this approach, MFG Mk can be

considered as a generalized observation at time k. Therefore,

we need to understand how errors are distributed in the

construction process of Mk, which can serve as the obser-

vation error in the EKF. With the observation error derived,

the landmark errors can be estimated by combining process

errors using the EKF. Therefore, the problem is solved in

two steps with the first step being the uncertainty analysis

of MFG.

IV. OBSERVATION ERROR: UNCERTAINTY IN MFG

Our previous work [1] has shown how to construct MFG

using a feature fusion method. However, the uncertainty of

each feature layer is yet to be analyzed. Here we detail the

uncertainty for each layer of MFG in a bottom-up manner.

A. Error Modeling of Raw Features

The MFG construction algorithm takes two images I

and I ′ as input and outputs a feature graph of five layers,



as illustrated in Fig. 2. In MFGs, key points and line

segments are raw features directly detected from images

using SIFT [25] and LSD [26], while ideal lines, primary

planes and vanishing points represent high level features

constructed from raw features. MFGs also include feature

correspondences between two views.

Note that I and I ′ actually represent Ik and Ik−1 in the

continuous image sequence, respectively. Here we drop k

and k − 1 from notations for simplicity. Furthermore, we

attach a superscript ′ to variables associated with I ′. As a

convention, we use a ∼ on top of a homogeneous vector to

denote its inhomogeneous counterpart throughout this paper.

For each key point pi in I , we model its measurement

error as an independent and identically distributed (i.i.d.)

zero-mean isotropic Gaussian noise with variance σ2 in each

axis

Cov(p̃i) = σ2I2, ∀i (1)

where I2 is a 2× 2 identity matrix.

For each line segment si in I , denote its two endpoints

by ei1 and ei2. Define ui‖ and ui⊥ to be two unit vectors

parallel and perpendicular to the line segment, respectively

(see Fig. 3). We model the error of ei1 (the same for ei2)

iiu

ei2

ei1
ui| |

i׋ u

v

| | i

Fig. 3. Uncertainty of line segment endpoints.

as an independent 2D Gaussian with its covariance matrix

to be diagonal in the coordinate system defined by ui‖ and

ui⊥ as below

Σi‖⊥ =

[

σ2
i‖ 0

0 σ2
i⊥

]

, (2)

where σi⊥ and σi‖ are the standard deviations of ei1 in

directions of ui⊥ and ui‖, respectively. σi⊥ is usually much

smaller than σi‖. We have observed that σi⊥ usually is

inversely correlated to the line segment length. Furthermore,

σi⊥ also has a lower bound of σp due to pixelization error.

Thus, we model the endpoint error as follows,

σi‖ = σ‖, σi⊥ =
σi‖

‖si‖
+ σp, ∀i, (3)

where σ‖ and σp are constant and independent of i, and ‖si‖
denotes the length of si. The parameters for the models can

be determined using Monte Carlo simulation. Projecting (2)

back to the image coordinate system (ICS), we have

Cov(ẽi1) = R(φi)Σi‖⊥R(φi)
T (4)

where φi is the angle between ui‖ (see Fig. 3) and u-

axis, and R(φi) =

[

cosφi − sinφi

sinφi cosφi

]

. Note that the error

model in (2-4) for line segments may differ for different line

detectors. However, the rest of our analysis still applies.

With error distributions of raw features obtained, we are

ready to analyze high level features such as ideal lines and

primary planes.

B. Error Analysis of Ideal Lines

In the MFG construction process, an ideal line li is

obtained by fitting a straight line through endpoints of a set

of mi collinear line segments {sj : 1 ≤ j ≤ mi}. The i-th

ideal line in I can be parameterized in terms of angle θi and

intercept ρi with the following homogeneous format in ICS,

li = [cos θi, sin θi, ρi]
T (5)

such that u cos θi+v sin θi+ρi = 0 holds for any point (u, v)
on li. Since the fitting process employs maximum likelihood

estimation (MLE) to obtain optimal solution [θ∗i , ρ
∗
i ]

T, we

have the following lemma.

Lemma 1: Given collinear line segments set {sj} with

their endpoint covariance matrices in (4), if MLE is

employed to estimate [θ∗i , ρ
∗
i ]

T, the resulting li can be

approximated by a Gaussian with a mean vector of

[cos θ∗i , sin θ
∗
i , ρ

∗
i ]

T and a covariance matrix of,

Cov(li) = J Cov(θ∗i , ρ
∗
i ) J

T, (6)

where J =

[

− sin θ∗i cos θ∗i 0
0 0 1

]T

and Cov(θ∗i , ρ
∗
i ) is given

by (21) in the online technical report [27].

Proof: See Appendix I in [27].

C. Error Analysis of Primary Planes

In an MFG based on two views, a primary plane πi is a 3D

plane represented by a 4D homogeneous vector in the CCS

associated with I . Furthermore, if πi does not pass through

the camera center (which is often the case in practice), we

can have

πi = [π̃T

i , 1]
T, (7)

where π̃i is a 3× 1 vector for the inhomogeneous represen-

tation of πi.

Based on the coplanarity relationship in an MFG, each

plane πi can be associated with pi coplanar point correspon-

dences {pij ↔ p′
ij : j = 1, · · · , pi}, and qi coplanar line

correspondences {liκ ↔ l′iκ : κ = 1, · · · , qi}. These feature

correspondences satisfy a homography induced by πi

p′
ij = Hipij , liκ = HT

i l
′
iκ, (8)

where

Hi = K(R− tπ̃T

i )K
−1, (9)

and R and t are the rotation matrix and translation vector

between two views, respectively.

Eqs. (8 and 9) suggest a method of computing π̃i based

on R and t. However, if R and t are simply derived from

epipolar geometry without considering the planar structure

information, the solution is not optimal, and neither is π̃i.

Inspired by the method from [28], we estimate all π̃i’s, R
and t simultaneously by employing all geometric features



(i.e., key points and ideal lines) and constraints (i.e., epipo-

lar constraint and homography) under an MLE framework.

Define ΘP1 = [π̃T

1 , · · · , π̃
T

i , · · · ]
T. Supposing Θ∗

P1 is the

MLE output of ΘP1, we have the following lemma.

Lemma 2: Given that key point errors follow i.i.d.

isotropic Gaussian distributions with covariance matrices in

(1) and line segment endpoints follow independent Gaussian

distributions with covariance matrices in (4), if MLE is

employed to estimate all π̃i’s for primary planes, then the

distribution of each π̃i can be approximated by a Gaussian

distribution with the following mean and covariance matrix,

π̃
∗
i = Ti Θ

∗
P1 (10)

Cov(π̃∗
i ) = Ti Cov(Θ∗

P1) T
T

i (11)

where Ti = [03,3i−3 : I3 : 03,3(p−i)+6], Cov(Θ∗
P1) is derived

in a way similar to that in (21) of [27], 0a,b is an a× b zero

matrix, and I3 is a 3× 3 identity matrix.

Proof: See Appendix II in [27].

V. EKF BASED MAPPING WITH MFG

Two-view based MFGs only provide local information of

high level features. In order to build a global map in {W},

EKF is employed to estimate the posterior of landmarks as

well as a robot trajectory.

A. System State Representation

In the EKF framework, we maintain and keep updating a

system state yk, which is composed of the robot state xk

and 3D landmarks.

The robot state is defined as

xk = [rTk ,q
T

k ,ν
T

k ,ω
T

k ]
T, (12)

where rk is a 3D location in {W}, qk is an orientation

quaternion w.r.t. {W}, νk is a velocity vector in {W}, and

ωk is an angular velocity vector in {Ck}.

In yk, we use π̃
W
i to represent the i-th 3D plane landmark

in {W}. To represent a 3D line, general methods like Plücker

coordinates would need as many as 6 parameters. However,

a 3D vector is sufficient in this work since our method is

only interested in coplanar lines associated with landmark

planes. Supposing a landmark line resides on plane π̃
W
i ,

then there exists an one-to-one mapping between this line

and its projection on image plane I0, which is actually a 2D

homography induced by π̃
W
i . Let us denote lkj the projection

of the j-th landmark line on Ik. Then, we can use l0j to fully

represent the j-th landmark line in yk since we already have

π̃
W
i in yk.

As a result, the complete system state can be written as

yk =
[

xT

k , · · · , (π̃
W
i )T, · · · , (l0j )

T, · · ·
]T

. (13)

B. EKF Formulation

In an EKF framework, a process model and an observation

model need to be specified for the prediction and update

steps, respectively.

1) Process Modeling: We follow the conventional as-

sumptions of “constant velocity, constant angular velocity”

in [14] for camera motion to formulate the process model as

follows,

xk+1 =









rk+1

qk+1

νk+1

ωk+1









=









rk + νk∆t

qk × q(ωk∆t)
νk

ωk









,

where q(ωk∆t) denotes the quaternion defined by the angle-

axis rotation vector ωk∆t, and ∆t is the time interval

between two steps. Note this is just a partial model for

the system state in (13) while the rest of states of yk are

landmark states. Since landmarks are assumed to be static,

their corresponding states remain unchanged in the prediction

step.

2) Observation Modeling: An observation function maps

the system state to landmark observations. For a plane

landmark π̃
W
i , the observation produced by Mk is its repre-

sentation π̃
k
i in {Ck}. Define a matrix W

k T that transforms

a 3D point (of homogeneous format) from {Ck} to {W} as

W
k T =

[

R(qk) rk
0 1

]

4×4

, (14)

where R(qk) represents the rotation matrix defined by qk.

For a primary plane landmark π
k
i , we know that π

k
i =

W
k TT

π
W
i . This implies the observation to be

π̃
k
i =

(

W
k TT

π
W
i

)

1:3
(

W
k TT

π
W
i

)

4

(15)

where (V )a denotes the a-th element of vector V , and (V )a:b
denotes the sub vector of V indexed from a to b.

For a line landmark l0j , its observation from Mk is lkj .

Supposing l0j lies on plane π̃
W
i , lkj can be computed from l0j

via a homography [29]

lkj =
(Hk

i )
−Tl0j

∥

∥

(

(Hk
i )

−Tl0j
)

1:2

∥

∥

(16)

where Hk
i = K

[

R−1(qk) + R−1(qk)rk
(

π̃
W
i

)T
]

K−1 and

‖ · ‖ is L2 norm.

Eqs. (15 and 16) fully determine the observation function.

It is worth noting that the covariance matrices of observation

noise have been presented in Lems. 1 and 2. EKF also

provides covariance of landmarks in its covariance update

and prediction steps. Since this is a standard EKF procedure,

we skip details here.

C. Landmark Initialization and Management

Since two views are needed to establish an MFG, the

system should start at k = 1 when M1 is constructed and

landmark planes and lines are added to y1. Starting from

y1, the system enters the prediction and update loops. As

the robot travels farther, new landmarks may be discovered

and added to the system state. Because the MFG output is

the landmark representation in the current CCS, it needs to

be transformed to {W} before augmenting the system state.



This coordinate transformation is represented by W
k T or the

inverse of Hk
i as shown in (14-16).

VI. EXPERIMENTS

We have implemented the proposed method using Matlab

on a Desktop PC. The camera used in the experiment is a

pre-calibrated Nikon D5100 camera equipped with a 18 mm

lens, which ensures a horizontal field of view of 60◦. Images

are down-sampled to a resolution of 800 × 530 pixels. We

have conducted two experiments: uncertainty test and field

mapping test.

A. Uncertainty Test

The purpose of this experiment is to verify how the

estimation uncertainty of landmarks changes as more images

entering our system. A sequence of 14 images has been taken

while the camera was carried by a person walking towards a

building. The starting point is around 40 meters away from

the building. Images have been captured every 1 ∼ 2 meters

approximately with the first step length known to be 1.5

meters.
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Fig. 4. (a) A sample view (upper) and constructed 3D landmarks (lower),
(b) Standard deviations of plane depth vs #frames.

The upper image in Fig. 4(a) shows a sample of the image

sequence and the lower line drawing in Fig. 4(a) shows

the 3D landmarks constructed from the image sequence.

Each plane and its coplanar line segments are coded in

the same color. Fig. 4(b) demonstrates that the standard

deviation of the depth of each landmark plane (using the

same color coding as that in the lower line drawing in

Fig. 4(a)) decreases as the frame number increases.

B. Field Mapping Test

site 1 site 2 site 3

Fig. 5. Experiment sites.

In the second experiment, we have tested our method in the

field including three sites on Texas A&M University campus

as shown in Fig. 5. At each site, the camera follows a pre-

defined route. Images are taken every 4 meters approximately

while the first step has been known to be exact 4.0 meters as

a reference. The distance traveled and the numbers of frames

collected at each site are shown in columns 2 and 3 of Tab. I.

As shown in the table, our method was able to successfully

recognize high level landmarks including primary planes

(col. 3) and their coplanar line segments (col. 4). Fig. 1

actually shows a 3D visualization of the map of high level

landmarks constructed from data of site 1, where coplanar

lines are color coded according to underlying planes.

We employ three error metrics to assess landmark mapping

accuracy. εd and εa are defined for evaluating planes, and

εL is defined for assessing lines. Suppose plane π̃
W
i is

introduced to the map since the ki-th frame Iki
. Let di

denote the true plane depth of π̃W
i in {Cki

} obtained using a

BOSCH GLR225 laser distance measurer with a range up to

70 m and measurement accuracy of ±1.5 mm. Define d̂i as

the estimated value of di from EKF output. Then a relative

metric for plane depth error is defined as

εd =
1

N

N
∑

i=1

‖di − d̂i‖

di
, (17)

where N is the number of landmark planes. Similarly, define

εa to be the angular error metric for plane normal. It is worth

noting that there exists global drifting error between {Cki
}

and {W}, which will be addressed in future loop closure

stage. Here we focus on εd and εa after the plane landmark

appears in the camera field of view.

To evaluate a line landmark’s estimation accuracy, we

consider a re-projection error in ICS. Suppose l0j is added

to the map since the kj-th frame. Let l̂kj be the re-projection

of l0j in Ikj
, and e

(j)
h be the h-th observed endpoint of line

segment in Ikj
associated with l̂kj . Then the error metric for

lines is defined based on the distance between observed line

segment endpoints and re-projected line in local frame:

εL =
1

M

M
∑

j=1

1

Nj

Nj
∑

h=1

d⊥(e
(j)
h , l̂kj ), (18)

where d⊥(·) represents the distance from a point to a line,

M is the number of line landmarks and Nj is the number

of line segment endpoints associated with l̂kj .

Tab. I shows the mapping results based on the three

metrics. It is clear that our method successfully maps the

high level landmarks. However, since loop closure has not

been performed, the estimated camera trajectory inevitably

suffers from drifting error, which will be addressed in the

future work.

VII. CONCLUSION AND FUTURE WORK

We developed a method to allow a mobile robot to perform

mapping of building facades by enabling high level landmark

mapping. The method incorporated a multiple layer feature

graph (MFG) into an EKF framework. We analyzed how

errors are generated and propagated in the MFG construction



TABLE I

FIELD MAPPING TEST RESULTS.

site dist. (m) #frames #planes #lines
εd (%) εa (◦) εL (pixel)

mean std. dev. mean std. dev. mean std. dev.

1 216 55 8 197 3.48 2.91 1.77 2.34 0.52 0.26

2 156 40 6 231 4.66 3.27 0.83 3.75 0.39 0.22

3 180 36 7 225 4.09 3.96 1.65 3.09 0.47 0.31

process, which are used as observation error models in the

EKF. We derived closed form solutions for error distribution

to quantify the observation errors. Based on projective ge-

ometry, we derived observation models to complete the EKF

framework. We implemented and tested the system at three

different sites. Experiment results have shown that high level

landmarks are successfully constructed in a modern urban

environment with mean relative plane depth error less than

4.66%.

In future, we will develop a new loop closure algorithm by

utilizing feature relationships in MFG to deal with the drift-

ing issue and improve system robustness. We will incorporate

the MFG framework with different sensors such as depth

cameras and IMU to further increase system performance.

We also plan to investigate how to utilize GPU to accelerate

the computation process. More large scale experiments for

both indoor and outdoor applications are planned as well.
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